

February 2, 2011

Project 10627.003.0

Carmen D. Santos
Project Manager
RCRA Corrective Action Office
Waste Management Division
USEPA Region 9
Mail Code WST-4
75 Hawthorn Street
San Francisco, California 94105

Re: Former Pechiney Cast Plate Facility (3200 Fruitland Avenue)

Dear Ms. Santos:

As a follow-up to the December 29, 2010 submittal, please find attached the preliminary site-specific grading plan (Figure G-9) and site figures depicting the areas where polychlorinated biphenyls will remain in soil after the implementation of the site-specific Remedial Action Plan (Figures G-9A and G-9B) as outlined in our response to Condition C.3.c. of the July 2, 2010¹ conditional approval letter.

Also, please find attached revised Tables 3 and 4 of Attachment 1-Impact of Additional Soil and Concrete Characterization on Risk-Based Remediation Goals (Condition C.3.a), previously submitted to you on December 29, 2010. These tables were updated to include data qualifiers.

Please give me a call to discuss, or if you need any additional information.

Sincerely yours, AMEC Geomatrix. Inc.

Linda Conlan, PG Principal Geologist

Direct Tel.: (949) 574-7083 E-mail: linda.conlan@amec.com

¹ U.S. EPA, July 2, 2010, Polychlorinated Biphenyls – U.S. EPA Conditional Approval Under 40 C FR 761.61(c) Toxic Substances Control Act – "Polychlorinated Biphenyls Notification Plan, Former Pechiney Cast Plate, Inc. Facility, Vernon, California."

AMEC Geomatrix, Inc. 510 Superior Avenue, Suite 200 Newport Beach, CA USA 92663-3627 Tel (949) 642-0245 Fax (949) 642-4474 www.amecgeomatrixinc.com

AMEC Geomatrix

TABLE 3

DIOXIN-LIKE POLYCHLORINATED BIPHENYL (PCB) CONGENERS AND DIOXIN TEQs IN CONCRETE

Former Pechiney Cast Plate, Inc., Facility Vernon, California

Concentrations reported in picograms per gram (pg/g)

[Ţ								egrame per gram	1 0 0/						
Sample Location	Sample ID	Phase Area	Sample Depth ¹	Sample Date	PCB 77	PCB 81	PCB 105	PCB 114	PCB 118	PCB 123	PCB 126	PCB 156, 157	PCB 167	PCB 169	PCB 189	Dioxin TEQ ²
WHO 2005 TEF ³				0.0001	0.0003	0.00003	0.00003	0.00003	0.00003	0.1	0.00003	0.00003	0.03	0.00003	4	
C-12	C-12-A	I	0	09/15/10	190 J	<11.7 ⁵ UJ	825	<45.5	1440	<39.5	<52.6	143	49.0	<15.9	19.9	2.96
DC-154	DC-154-A	1	0	09/15/10	119,000	4660	457,000	28,900	703,000	11,500	5960	44,700	13,200	<564	2630	656
DC-168	DC-168-C	I	0	09/15/10	2,730,000	164,000 J	10,500,000	842,000	18,100,000 J,E	560,000	124,000	1,530,000	509,000	<37,214	302,000	14,250
C-14	C-14-A	IIA/IIB	0	09/15/10	131 J	<29.2 UJ	420 J	<72.4	920 J	<59.9 UJ	<100 UJ	242	98.6	<53.3	45.6	5.87
DC-22	DC-22-A	IIA/IIB	0	09/15/10	1010	<413	3310	<440	7990	405	<339	1300	1020	238	535	24.7
DC-23	DC-23-A	IIA/IIB	0	09/15/10	4060	<1546	13,900	<1109	26,200	<1135	<842 UJ	4340	2740	<536	1030	52.3
DC-52	DC-52-A	IIA/IIB	0	09/15/10	659 J	<59.3 UJ	2220	99.3	2990	104	<82.4	216	136	<50.5	41.7	5.13
B-1	B-1-A4 ⁶	IV	0	09/15/10	4600	<2171	14,600	<1746	25,200 J	<1546	<1647	1700	<1000	<677	<581	94.6
DC-25	DC-25-A	IV	0	09/15/10	77.9 J	<32.6 UJ	260	<46.8	389	<39.3	<45.1	<46.6	58.0	<34.8	28.5	2.81

Notes:

- 1. Depth = top of sample depth measured in feet below ground surface.
- 2. TEQ = Toxic Equivalent. Dioxin TEQ concentrations are calculated as the sum of the concentration of each dioxin-like PCB congener times the congener-specific toxic equivalency factor (TEF). The dioxin-like PCB congener concentrations in concrete and TEFs are listed above. Results below the reporting limit are represented by a value of one half the reporting limit in the dioxin TEQ concentration calculations.
- 3. WHO 2005 TEF = World Health Organization toxicity equivalency factors (TEF), released in 2005, but published in 2006 by Van den Berg, M. et al. ("The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds," Toxicological Sciences, 93[2]: 223-241, October).
- 4. -- = not applicable.
- 5. < = not detected at or above the reporting limit shown.
- 6. Samples B-1-A1, B-1-A4, and B-1-A5 were collected from the same area. Of the three samples, sample B-1-A4 was selected by SGS for analysis of PCB congeners.

Qualifiers:

E = concentration detected is greater than the upper calibration limit

J = estimated value

UJ = indicates the compound was analyzed but not detected and the sample detection limit is an estimated value.

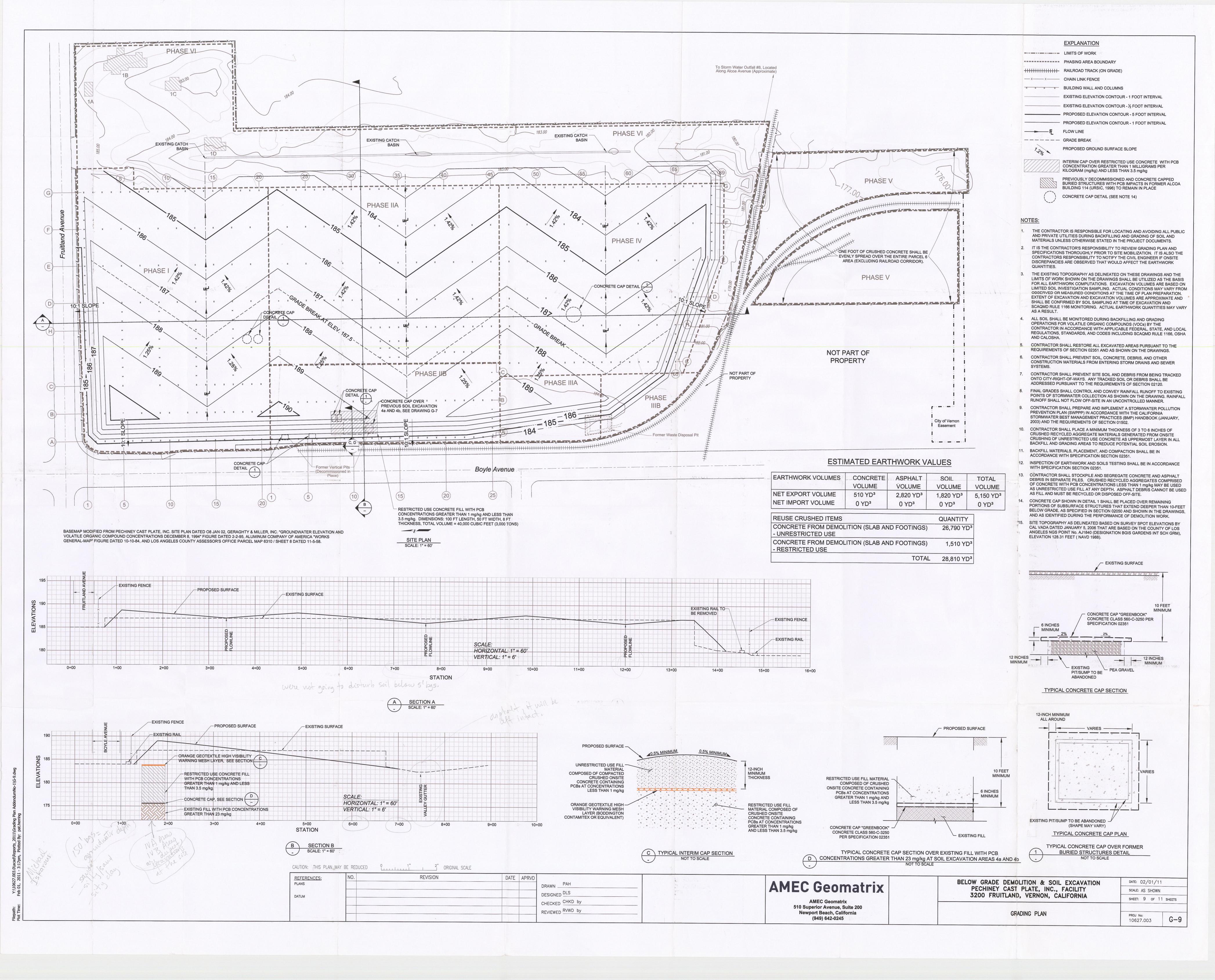
TABLE 4

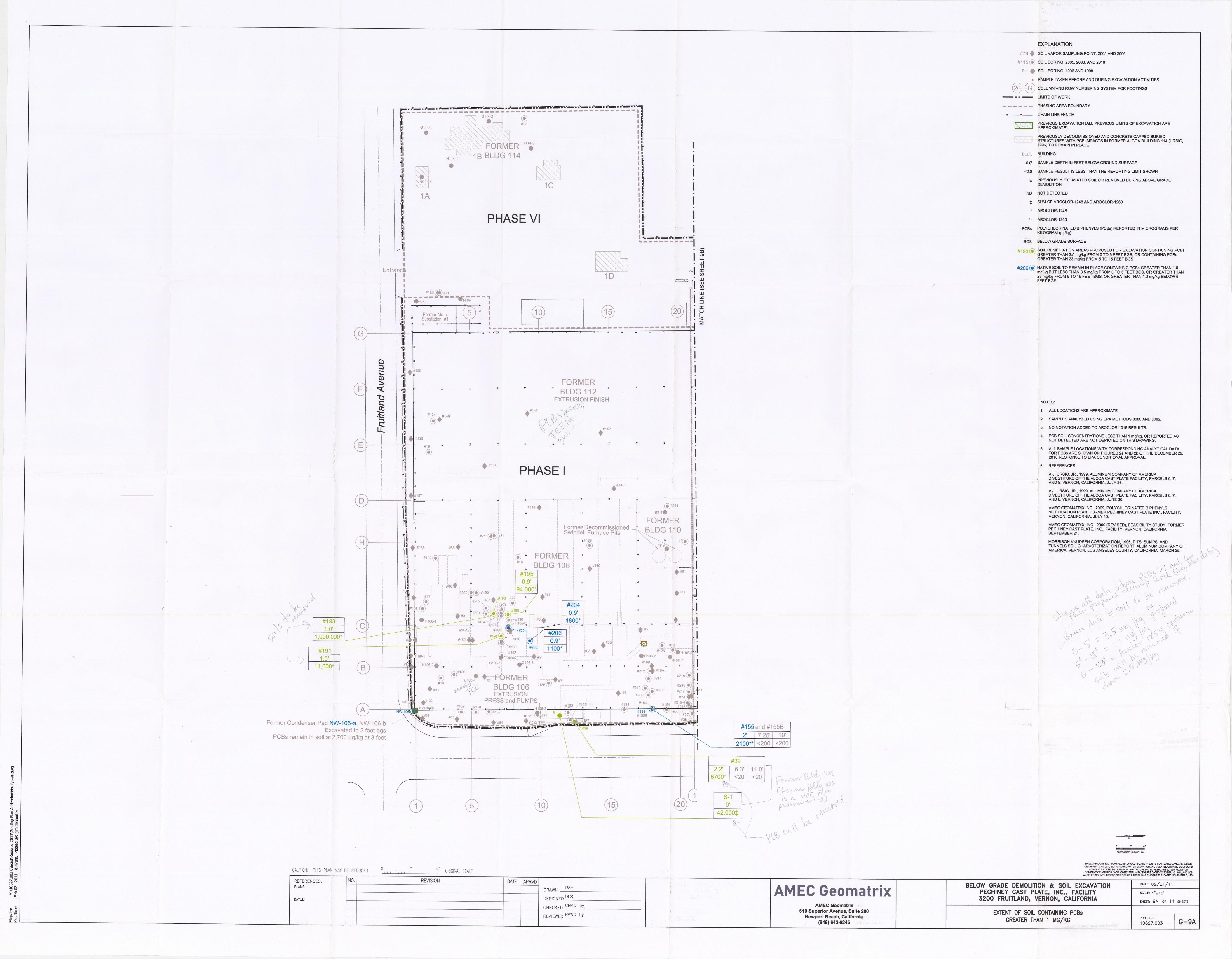
DIOXIN-LIKE POLYCHLORINATED BIPHENYL (PCB) CONGENERS AND DIOXIN TEQs IN SOIL

Former Pechiney Cast Plate, Inc., Facility Vernon, California

Concentrations reported in picograms per gram (pg/g)

Sample Location	Sample ID	Phase Area	Sample Depth ¹	Sample Date	PCB 77	PCB 81	PCB 105	PCB 114	PCB 118	PCB 123	PCB 126	PCB 156, 157	PCB 167	PCB 169	PCB 189	Dioxin TEQ ²
	WHO 2005 TEF ³			0.0001	0.0003	0.00003	0.00003	0.00003	0.00003	0.1	0.00003	0.00003	0.03	0.00003	4	
#184	184-SS-01	I	1.7	09/13/10	4.18	<2.37 ⁵	36.6	<4.33	75.4 J	<3.59	<4.44	28.2	9.91	<4.28	2.82	0.29
#185	185-SS-01	<u> </u>	2.4	09/13/10	5.74	<5.18	40.2	5.85	176 J	5.74	<2.72	6.58	<2.77	<2.39	1.25	0.18
#187	187-SS-01	ı	1.8	09/14/10	<60.1	<55.0	2200 J	<216	2740 J	<227 UJ	<306 UJ	4760	1540	<139	176	17.7
#178	178-SS-01	IIA/IIB	0	09/13/10	11,900	<698	44,200 J,E	1060	75,200 J,E	8030	<925	7250	2450	<216	487	54.9
#181	181-SS-01	IIA/IIB	5.7	09/13/10	959	43.3	3620 J,E	253	5950 J,E	141	61.0	597	191	9.68	66.7	6.82
#182	182-SS-01	IIA/IIB	5.7	09/13/10	131,000 J,E	<15,391	565,000 J,E	25,400	1,030,000 J,E	22,400	<8373	157,000 J,E	56,300 J,E	<5493	23,100	573
#188	188-SS-01	IIA/IIB	2.3	09/13/10	26.5	<2.60	99.0	6.87	156 J	4.03	<2.16	7.68	2.73	<1.09	<1.12	0.14
#189	189-SS-01	IIA/IIB	4.7	09/14/10	41.9	<10.7	94.0	<8.38	198 J	<6.87	<8.89	8.55	<3.44	<3.30	<2.00	0.51
#189	189-SS-02	IIA/IIB	9.7	09/14/10	690	<87.7	33,900 J,E	1170	31,800 J,E	1040	<47.6	931	169	<11.5	6.57	4.71
#175	175-SS-01	IIIA	2.7	09/13/10	51,500	3130	246,000 J,E	18,700	320,000 J,E	7200	3450	20,900	5760	252	1210	377
#176	176-SS-01	IIIA	4.5	09/14/10	102,000 J,E	4230	322,000 J,E	23,000	446,000 J,E	13,400	3090	22,000	6090	103	937	349
#177	177-SS-01	IIIA	4.5	09/14/10	4080 J,E	<112	9320 J,E	503	14,200 J,E	368	85.5	464	127	<4.26	17.4	9.79
#180	180-SS-01	IIIA	4.5	09/14/10	1020	39.5	3570 J,E	232	6250 J,E	117	79.1 J	644	163	<11.4	36.1	8.53
#180	180-SS-02	IIIA	9.5	09/14/10	382	16.4	1140	84.1	2150 J	50.4	17.1	128	37.3	<2.64	6.30	1.90
#179	179-SS-01	IV	0.8	09/13/10	<1984	<1837	4220	<1834	6710	<1630	<1716	<1470	<1316	<1296	<967	106
#183	183-SS-01	IV	0.8	09/13/10	32,200 J,E	1160	111,000 J,E	6490	169,000 J,E	4620	1140	8740	2310	49.2	516	128
#186	186-SS-01	VI	2.0	09/14/10	15.4	<4.97	40.4 J	<4.58	60.9 J	<4.31	<4.32	5.27	1.97	<1.58	<1.17	0.25


Notes:


- 1. Depth = top of sample depth measured in feet below ground surface.
- 2. TEQ = Toxic Equivalent. Dioxin TEQ concentrations are calculated as the sum of the concentration of each dioxin-like PCB congener times the congener-specific toxic equivalency factor (TEF). The dioxin-like PCB congener concentrations in soil and TEFs are listed above. Results below the reporting limit are represented by a value of one half the reporting limit in the dioxin TEQ concentration calculations.
- 3. WHO 2005 TEF = World Health Organization toxicity equivalency factors (TEF), released in 2005, but published in 2006 by Van den Berg, M. et al. ("The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds," Toxicological Sciences, 93[2]: 223-241, October).
- 4. -- = not applicable.
- 5. <= not detected at or above the reporting limit shown.

Qualifiers:

E = concentration detected is greater than the upper calibration limit

- J = estimated value
- UJ = indicates the compound was analyzed but not detected and the sample detection limit is an estimated value.

bath: Y:\10627.003.0\acad\Reports_2011\Grading Plan AddendumNo-1\G-Times.